Daily Energy Blog

The Renewable Identification Number (RIN) has long served as the tool used to force renewable fuels like ethanol and soybean oil into the U.S. gasoline and diesel supply. A creation of the Renewable Fuel Standard (RFS), RINs act as a subsidy that enables the production of renewable fuels that would not otherwise be economically justified. RIN prices are set by the usual workings of supply and demand, but chatter has bubbled up recently in the renewable fuels ecosystem that prices for a particular variety of RIN could be headed for a crash. In today’s RBN blog, we explain what’s behind the talk about RIN prices.

Around the world, there’s a strong push to put aviation on a more sustainable footing and reduce the industry’s greenhouse gas (GHG) footprint. Increasing the production of sustainable aviation fuel (SAF) — a close cousin of renewable diesel (RD) — is key to this effort. But while the economic case for producing RD in the U.S. has been compelling for some time thanks to government subsidies, the returns on investment for producing SAF appear more dubious, despite a seemingly generous production tax credit for SAF in the Inflation Reduction Act (IRA). As we discuss in today’s RBN blog, the incentive for making jet fuel is likely too small — and too short-lived — to overcome the higher cost of production for SAF compared to RD, and additional incentives may be needed to spur meaningful increases in SAF production.

It has become abundantly clear over the past couple of years that energy transition isn’t going to be a straight line leading directly to abundant carbon-free power and a net-zero world. All sorts of obstacles have popped up, indicating that the energy industry’s trilemma of availability, reliability and affordability not only clash with each other, they can also conflict with environmental priorities. The challenge is being felt now in Hawaii, where a commitment to expanding energy production from renewable sources and tamping down the use of fossil fuels while also keeping prices under control and reducing pollution is turning out to be no easy feat. In today’s RBN blog, we look at Hawaii’s recent efforts to phase out coal- and oil-fired power generation, why that’s turned out to be easier said than done, and what it all means for environmental performance and energy prices.

Clean ammonia, produced by reacting either “blue” or “green” hydrogen with nitrogen, is emerging as one of the most highly touted low-carbon energy sources of the future, thanks largely to massive tax incentives provided by the Inflation Reduction Act (IRA). Skeptics may question the extent to which clean ammonia — and clean hydrogen, on which it’s based — can realistically take market share from natural gas and coal as leading power-plant fuels over the next 20 to 30 years, but there’s a lot to be said for them and, as wind- and solar-power developers have already come to appreciate, billions of dollars in governmental support can do wonders. In today’s RBN blog, we continue our look at the growing list of U.S. clean ammonia projects now under development.

The Inflation Reduction Act (IRA), which became law several months ago, may have an enormous impact on the U.S. energy landscape over the long run, but many of its key provisions, including the much-discussed tax credits for electric vehicles (EVs), have been missing one big thing: rules of the road. Federal agencies such as the Department of Energy (DOE), the Environmental Protection Agency (EPA) and the Treasury Department are responsible for implementing and enforcing laws passed by Congress, which are not only lengthy and complex, but often leave out important details. That’s where federal rulemaking comes into play, filling in the details and addressing questions left unanswered in the original legislation. In today’s RBN blog, we look at how the rules surrounding the New Clean Vehicle Credit (NCVC) are taking shape, the detailed steps that automakers will have to take to meet new sourcing and content requirements, and what it all means for prospective EV buyers.

There’s been a lot written about the federal government’s plan to provide billions of dollars in financial support to create a limited number of regional hydrogen hubs but not a lot of insight about how those hub proposals are being crafted to meet the Department of Energy’s (DOE) selection criteria. The details and strategies behind those plans have been hard to come by because few of the initial concept papers were made public while others remain a mystery, even months after the first informal winnowing of candidates. One exception is the Leading in Gulf Coast Hydrogen Transition (LIGH2T) hub proposal being prepared by a consortium that includes a large group of states, some key commercial partners, several universities and the National Energy Technology Laboratory (NETL). In today’s RBN blog, we look at what we know about the LIGH2T proposal, which will submit a full application by the April 7 deadline, and how it addresses three key factors likely to play a role in the selection process.

The buzz and activity around renewable diesel (RD), a chemically identical “drop-in” replacement for traditional petroleum-based diesel, continues to grow. The goals with RD, which is produced from renewable feedstocks, are to reduce the need for petroleum and to lower life-cycle greenhouse gas (GHG) emissions — critical steps in meeting climate agendas in many countries. Canada recently enacted legislation designed to promote the domestic production of RD as part of a broader emissions-reduction strategy. In today’s RBN blog, we take a tour of the newly emerging RD production sector in Canada and examine whether it could one day replace imports from the U.S.

As the push for decarbonization in the transportation sector gathers momentum, electrofuels — also known as eFuels, which are produced by using electricity to combine the hydrogen molecules from water with the carbon from carbon dioxide (CO2) — are beginning to attract attention as an alternative fuel with three important selling points in today’s environment. First, eFuels are available now and can be made with current technology, although there is a lot of room for future improvements and growth. Second, because they are considered drop-in replacements, they are essentially indistinguishable from the fossil-based conventional fuels in use today, which means they can be used without any changes to the existing energy infrastructure. Third, they can capitalize on a rapidly growing set of hydrogen and CO2 suppliers eager to secure a diversified set of offtakers. In today’s RBN blog, we look at HIF Global’s approach to eFuels production, its demonstration plant in Chile and its big plans for Texas and beyond.

U.S. production of renewable diesel (RD) is rising fast and production of sustainable aviation fuel (SAF) will soon follow suit, driven largely by federal and state incentives. But U.S. demand for both RD and SAF is growing at a more measured pace, mostly because they are throttled by a number of other governmental policies, including the level of blending mandates set by the Environmental Protection Agency (EPA). As we see it, the net effect of this disconnect between domestic supply and demand will be the U.S. becoming a net exporter of RD this year and a net exporter of SAF in 2025 — but only after a spike in SAF imports in 2023-24. Yes, it’s complicated, but with public-sector policies impacting both sides of the supply/demand scale, did you really expect it wouldn’t be? In today’s RBN blog, we look at two more energy products the U.S. will be exporting.

The lack of successful projects has long been a thorn in the side of the carbon-capture industry, with a few high-profile cases falling short of expectations for a variety of economic and technological reasons. When looking for a prime example of how a highly touted (and taxpayer-supported) project can still fall short, the Petra Nova facility southwest of Houston, which completed its three-year demonstration period shortly before being shut in 2020, often comes to mind. But now it’s just a few months away from getting another shot, courtesy of its new owner and recovering oil prices. In today’s RBN blog, we look at the impending restart of the Petra Nova project, how falling oil prices overshadowed its technical successes, and its importance to the carbon-capture industry.

It’s not the most accurately named piece of legislation, but that doesn’t mean the Inflation Reduction Act (IRA) might not have an outsized impact on everything from electric vehicles (EVs) and hydrogen production to greenhouse gas (GHG) emissions and carbon-capture projects. There’s plenty of potential for things to happen in the long run, but before then, a lot needs to get done — including the rules and regulations that will guide the IRA’s implementation. In today’s RBN blog, we look at why the IRA remains a work in progress, the critical role that rulemaking will play, and potential impediments to the law’s long-term success.

When carbon dioxide (CO2) is captured and stored deep underground, a process known as carbon capture and sequestration (CCS), it’s supposed to remain there permanently. Although much of today’s emphasis is on moving carbon-capture projects from aspirational to operational, there are long-term challenges to making sure those emissions stay put away for good, even if the odds of a significant leakage are considered remote. In today’s RBN blog, we look at the common risk factors for carbon-capture projects, explain why a site’s post-injection care-and-monitoring period can last for several decades, and detail the leakage risks that project planners must be prepared to handle.

The U.S. is gearing up to provide billions of dollars in financial support for a series of regional clean hydrogen hubs and had what amounts to an informal cutdown at the end of December, announcing that 33 project proponents had been formally encouraged to submit a full application this spring. Although the Department of Energy (DOE) didn’t name any of the projects on the “encouraged” list, we’ve been able to identify many of the proposals — and add five more in today’s blog — even though a lot of project details remain under wraps. In today’s RBN blog, we’ll look at the new projects on our list and examine the major factors that are likely to influence a project’s viability.

Pretty much everywhere you look, there’s a focus on decarbonizing the global economy, and a lot of those discussions start with the transportation sector. It generated 27% of U.S. greenhouse gas (GHG) emissions in 2020, putting it at the top of the list, just ahead of power generation and industrial production; combined, the three sectors account for more than three-quarters of the nation’s GHG emissions. For personal transportation, most of the attention has been on electric vehicles (EVs), but since the commercial transportation sector is largely powered by diesel and jet fuel, the push for decarbonization in trucking, air travel, and shipping has largely focused on ways to produce alternative fuels that reduce GHGs. Among those are ultra-low-carbon fuels called electrofuels, also referred to as eFuels, synthetic fuels, or Power-to-Liquids (PtL). In today’s RBN blog, we explain what eFuels are and how they compare to other alternatives, how they are produced, and what opportunity there might be to make a dent in the consumption of traditional transportation fuels.

If the world is going to reduce greenhouse gas (GHG) emissions to net-zero levels by 2050, a lot of things need to go right, with the success of the International Energy Agency’s (IEA) long-term plan balancing on three different pillars. First, there are emissions reductions from improvements to fossil fuels and processes, such as power generation and industrial production. Next, there are advancements in bioenergy, a category that includes biofuels like ethanol, sustainable aviation fuel (SAF), and renewable diesel (RD). And then there’s direct air capture (DAC) — a minor factor so far, but one with the potential for significant growth, especially given the billions in U.S. funding already set aside for it. In today’s RBN blog, we look at U.S. plans to develop four regional DAC hubs, how those proposals will be evaluated, and the likely timeline for their development.